12 min readβ’june 18, 2024
Avanish Gupta
Milo Chang
public static int linearSearch(ArrayList<Integer> array, int n) {
for (int i = 0; i < array.size(); i++) {
if (array.get(i) == n) {
return i;
}
}
return -1;
}
public static int recursiveLinearSearch(ArrayList<Integer> array, int n, int startingIndex) {
if (array.get(startingIndex) == n) {
return startingIndex; // base case #1: element found
} else if (startingIndex == array.size() - 1) {
return -1; //base case #2: element not found
} else {
//recursive call to check next element
return recursiveLinearSearch(array, n, startingIndex + 1);
}
}
//To use this method:
recursiveLinearSearch(array, n, 0);
/** Uses binary search on a sorted ArrayList
* 1. Looks at the middle of the list, which divides it into two sublists
* 2. The left sublist is less than the middle and the right is greater
* 3. Compare the value to be searched for to the middle value
* 4. If this value > middle, repeat 1-3 to the right sublist
* 5. If this value < middle, repeat 1-3 to the left sublist
* 6. If this value = middle, return the middle value
* 7. Return -1 if value not found
*/
public static int binarySearch(ArrayList<Integer> array, int n) {
int left = 0;
int right = array.size() - 1;
while (left <= right) { // left > right is "illegal"
int middle = (left + right) / 2; // get the middle index of sublist
if (n == array.get(middle)) { // item in middle of sublist
return middle;
} else if (n < array.get(middle)) { // item in left sublist
right = middle - 1;
} else if (n > array.get(middle)) { // item in right sublist, could just use else
left = middle + 1;
}
}
return -1; // item not in list
}
public static int recursiveBinarySearch(ArrayList<Integer> array, int n, int left, int right) {
int middle = (left + right) / 2; // get the middle index of sublist
if (left > right) { // base case #1: item not in list
return -1;
} else if (n == array.get(middle)) { // base case #2: item in middle of sublist
return middle;
} else if (n < array.get(middle)) { // recursive call #1: item in left sublist
return recursiveBinarySearch(array, n, left, middle - 1);
} else if (n > array.get(middle)) { // recursive call #2: item in right sublist, could just use else
return recursiveBinarySearch(array, n, middle + 1, right);
}
}
//To use this, call:
recursiveBinarySearch(array, n, 0, array.size() -1);
/** Uses insertion sort on an ArrayList
* 1. Assume the first element is already sorted
* 2. Select the second element
* 3. Insert it before the first element or keep it in place to make the first 2 elements sorted
* 4. Select the third element and insert it so that the first 3 elements are sorted
* 5. Repeat until all elements are sorted.
*/
public static ArrayList<Integer> insertionSort(ArrayList<Integer> array) {
for (int i = 1; i < array.length(); i++) {
int currentElement = array.get(i);
int currentIndex = i;
for (int j = i; j > 0 ; j--) {
if (currentElement < array.get(j - 1)) {
// shifting the item left until properly placed by swapping consecutive items
int itemToRight = array.get(j - 1);
array.set(j - 1, currentElement);
array.set(j, itemToRight);
}
}
}
return array;
}
public static ArrayList<Integer> recursiveInsertionSort(ArrayList<Integer> array, int index) {
if (index == array.size()) { // base case: end of list reached, list sorted
return array;
} else {
int currentItem = array.get(index)
for (int i = index; i > 0; i--) { // shifting item to the left until sorted
if (currentItem < array.get(i - 1)) {
int itemToRight = array.get(i - 1);
array.set(i - 1, currentItem);
array.set(i, itemToRight);
}
}
return recursiveInsertionSort(array, index + 1); // recursive call to sort the next item
}
}
//To use this method:
recursiveInsertionSort(array, 0);
/** Uses selection sort on an ArrayList
* 1. Originally the ArrayList is unsorted
* 2. We select the smallest number and swap it with the first element
* 3. Now the sorted subarray is the first item and the rest of the array is unsorted
* 4. Select the smallest of the unsorted numbers (the second smallest overall) and
* swap it with the second element
* 5. Now the first two elements are sorted and the rest are unsorted
* 6. Repeat until the rest of the elements are sorted
*/
public static ArrayList<Integer> selectionSort(ArrayList<Integer> array) {
for (int i = 0; i < array.size() - 1; i++) {
// traverse to the second to last item, the last item is automatically the largest
int smallestIndex = i;
int smallestElement = array.get(i);
for (int j = i + 1; i < array.size(); j++) {
//traverse through the rest of the array,
//looking for the smallest remaining item (less than smallestElement)
if (array.get(j) < smallestElement) {
smallestIndex = j;
smallestElement = array.get(j);
}
}
if (smallestIndex > i) {
// swap the elements of i and j if the element of i isn't already the smallest
int originalItem = array.get(i);
array.set(i, smallestElement);
array.set(smallestIndex, originalItem);
}
}
return array;
}
public static ArrayList<Integer> recursiveSelectionSort(ArrayList<Integer> array, int index) {
if (index == array.size()) {
return array;
} else {
int smallestIndex = index;
int smallestElement = array.get(index);
for (int i = index + 1; i < array.size(); i++) {
if (array.get(i) < smallestElement) {
smallestIndex = i;
smallestElement = array.get(i);
}
}
if (smallestIndex > index) {
int originalItem = array.get(index);
array.set(index, smallestElement);
array.set(smallestIndex, originalItem);
}
return recursiveSelectionSort(array, index + 1);
}
}
//To use this method:
recursiveInsertionSort(array, 0);
/** Performs Merge sort (each version requires 2 methods, one specific to each version to split the lists and one common method to merge the sublists)
* 1. Split the list in half repeatedly (2 sublists, 4 sublists, 8, 16, ...) until each sublist has one item
2. Sort and Merge consecutive items until we get sorted sublists of length 2
3. Sort and Merge consecutive sublists of 2 to get sorted sublists of length 4
4. Repeat until the list is fully merged and sorted
*/
// ITERATIVE SPLITTING FUNCTION
// void bc the method adjusts the array itself, so you can call the array in an
// outside method
public static void mergeSort(ArrayList<Integer> array) {
// determine the size of the sublists to be merged
for (int currentSublistSize = 1; currentSublistSize < array.size();
currentSublistSize *= 2) {
// merge sublists of the current size
for (int startOfSubarray = 0; startOfSubarray < array.size() - 1;
startOfSubarray += 2 * currentSublistSize) {
// determine the end indices of the subarrays to be merged
int middle=Math.min(startOfSubarray + currentSublistSize - 1, array.size() - 1);
int endOfSubarray = Math.min(startOfSubarray + 2 * currentSublistSize - 1,
array.size() - 1);
merge(array, startOfSubarray, middle, endOfSubarray);
}
}
}
// RECURSIVE SPLITTING FUNCTION
public static void recursiveMergeSort(ArrayList<Integer> array, int left, int right) { // merge sorts a sublist from starting index left to ending index right
if (left < right) {
// if the sublist has more than 1 item
int middle = (left + right) / 2;
// split the sublist in half and mergeSort the halves
recursiveMergeSort(array, left, middle);
recursiveMergeSort(array, middle + 1, right);
merge(array, left, middle, right);
}
}
// MERGING FUNCTION
public static void merge(ArrayList<Integer> array, int left, int middle, int right) {
int leftLength = middle - left + 1;
int rightLength = right - middle;
// create 2 temporary ArrayLists for the left and right halves
int[] leftTemporary = new int[leftLength];
int[] rightTemporary = new int[rightLength];
for (int i = 0; i < leftLength; i++) {
// copy data into temp lists
leftTemporary[i] = array.get(left + i);
}
for (int i = 0; i < rightLength; i++) {
// copy data into temp lists
rightTemporary[i] = array.get(middle + 1 + i);
}
int i = 0;
int j = 0;
int k = left;
// start sorting the merged section of the array by combining the sublists
while (i < leftLength && j < rightLength) {
if (leftTemporary[i] <= rightTemporary[j]) {
array.set(k, leftTemporary[i]);
i++;
} else {
array.set(k, rightTemporary[j]);
j++;
}
k++;
}
while(i < leftLength) {
// copy remaining elements of left and right if sublists of different size
array.set(k, leftTemporary[i]);
i++;
k++;
}
while(j < rightLength) {
// copy remaining elements of left and right if sublists of different size
array.set(k, rightTemporary[j]);
j++;
k++;
}
}
Β© 2025 Fiveable Inc. All rights reserved.