πŸ“š

Β >Β 

♾️ 

Β >Β 

πŸ’Ž

7.4 Reasoning Using Slope Fields

2 min readβ€’june 18, 2024


AP Calculus AB/BC ♾️

279Β resources
See Units

The actual solution (which can actually be manipulated to be separable*) to the differential equation in Eq. 39 is the following:
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(936).png?alt=media&token=76c65c2e-f550-407b-94aa-0619221dcebf
By going to https://www.desmos.com/calculator/fjli4efhcj and clicking the play button on equation 18, you can see that this curve does indeed fit the given slope field for any constant C. Clicking the play button will show different curves for different values of C.
The most intuitive way to think of a slope field is to picture a fluid flowing and then placing an object on the fluid that will trace out a path. This path is approximate toΒ the solution to the curve that represents the differential equation. πŸ˜€
Overall, solutions to these differential equations are functions or sets of functions that satisfy the conditions specified by the equation and provide insight into the underlying processes being modeled.
In many cases, a single differential equation may have multiple solutions, which are referred to as families of functions. These families of functions may differ in their behavior, shape, and mathematical properties, but they all satisfy the equation and provide a description of the system being modeled. For example, in physics, the solutions to a differential equation describing the motion of a particle may include a variety of functions that describe the particle's position and velocity over time.
The concept of solutions to differential equations is fundamental to the study of dynamic systems and plays a critical role in the analysis and prediction of complex phenomena. By finding the solutions to a differential equation, researchers and engineers can gain insight into the behavior of a system and make predictions about its future behavior. This information is used in various applications, including the design of engineering systems, the prediction of financial trends, and the modeling of physical and biological systems.

Review

Fill in the table below for different values of y’ at different coordinate points. Use a calculator to find the values to two decimal places. Create a slope field and then solve the differential equation and confirm that your slope field matches the solution to the differential equation. ✍
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(939).png?alt=media&token=b3092ad5-9705-4de3-87ad-a255333ad2bf

Answer

https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(942).png?alt=media&token=c2a610f4-7a97-48cb-893f-e725166dffac

https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(943).png?alt=media&token=5e664e30-690c-4389-88f7-f6a13da5032a
Varying values of C plotted over the slope field are shown here:

Footnotes

*One can make this separable by doing a substitution:
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(937).png?alt=media&token=876fb78c-7fe6-44a7-af2b-3f1ac0e4074f
From here, one can solve the latter differential equation (which will give a solution that is only a function of x) and substitute this into u = x + y, which will give the aforementioned solution to the original differential equation.


Browse Study Guides By Unit
πŸ‘‘Unit 1 – Limits & Continuity
πŸ€“Unit 2 – Fundamentals of Differentiation
πŸ€™πŸ½Unit 3 – Composite, Implicit, & Inverse Functions
πŸ‘€Unit 4 – Contextual Applications of Differentiation
✨Unit 5 – Analytical Applications of Differentiation
πŸ”₯Unit 6 – Integration & Accumulation of Change
πŸ’ŽUnit 7 – Differential Equations
🐢Unit 8 – Applications of Integration
πŸ¦–Unit 9 – Parametric Equations, Polar Coordinates, & Vector-Valued Functions (BC Only)
β™ΎUnit 10 – Infinite Sequences & Series (BC Only)
πŸ“šStudy Tools
πŸ€”Exam Skills

Fiveable
Fiveable
Home
Stay Connected

Β© 2025 Fiveable Inc. All rights reserved.


Β© 2025 Fiveable Inc. All rights reserved.